PcWaveForm解析機能 講習会資料

本書の適用範囲

DEICY製レコーダ で収録したデータファイルの波形表示と後解析を行うPcWaveFormプログラムの説明資料です。

この資料は、本プログラムによる基本の波形表示操作に習熟され、より深い解析を行われる方にとってヒントとなる情報をまとめたものです。

本資料では、PcWaveFormを用いた解析機能について説明いたします。

- ・フィルタ処理
- ・ FFT解析
- ・加速度/速度/変位の変換
- ・騒音計出力のデータ処理
- ・スクリプトについて

お断り 記載の内容については正確性を期していますが、必ずしも誤りのないことを保証するものではありません。 **DEICY** 2022年3月9日 (株)デイシー Rev. 2.03 Copyright 2015- DEICY Corp

フィルタ処理

元波形から目的の周波数を取り出す処理

ローパスフィルタ:遮断周波数よりも低い周波数成分のみ通過 ハイパスフィルタ:遮断周波数よりも高い周波数成分のみ通過 遮断周波数(カットオフ周波数):-3dBの値となる周波数

-50.000

100.000

1000.000

10000.001

聴感補正フィルタ、振動暴露補正フィルタなど

フィルタ処理

過渡領域が発生

位相ずれ対策 LPFとLPRの両方フィルタ処理することで、 位相遅れ+位相進みで位相ずれがなくなる

- ・目的とする周波数がなるべく影響を受けない
- ・不要な周波数が十分除去できる遮断周波数を設定する

6

フィルタ処理

PcWaveFormでフィルタ処理を行う

演算機能:メニューバーの [Analyze]→[calc...]を選択します。 / Createで書式追加

calc機能の詳しい使い方の資料は下記となります。 PL-U4101C1_PcWaveForm_取扱説明書_解析機能操作編「チャネル間演算Window」

- FFT解析 -

FFT解析

T Cnd Setting			
Title : FFT/AVEFFT		T艇朴粂	\$件設定
Analysis Condition :		1/1/1/21	
Analysis Type : Spectrum (peak)	▼ Window Func.: Ha	nming 💌 t	0: 0 T: 1024
FFT Points : 1024	Display Lines : 400	Max Freq	iency : 2000.000Hz
Ave FFT Param : Overlap : 99 % A	Ave. Counts : 221	Spectra (Av	e C Max C Both
X Axis :	Y Axis :		
Axis Attb.: LOG	Axis Attb.: LOG	Format :	* *** Setting
Format : *:*** Setting	C 0dB = max	€ 0dB = 2e-005	
	Auto		
Cursor : Ref.Ch :	 AutoHold 	Max Value : 10	G
Visible	C Manual	Min Value : 0.1	
Color :	Plot :		
Outside :	Plot Color	Ch Name	Unit
Title :	1	2 Y	G
GridLine :			
Scale Value :			
Cursor Line :			

PcWaveForm 解析機能講習会資料

- ・FFT解析
 - ・FFTとはなにか? FFTの概要
 - ・FFT解析設定方法 基本的な使い方と設定方法
- ・WaterFall解析
 - ・WaterFall解析概要

FFTとは

Fast Fourier Transform : 高速フーリエ変換

→ 離散フーリエ変換を高速で行う

フーリエ変換: ある関数を正弦波の無限級数で表現し、 各正弦波の係数を求める

→ 時間関数 f(x) を周波数成分による関数 F(ω) に変換

11

離散フーリエ変換 離散値に対してフーリエ変換 •

$$F(t) = \sum_{x=0}^{N-1} f(x)e^{\frac{-i\omega tx}{N}}$$

データ量が増えると 計算に時間がかかる

計算方法を工夫して 高速化したのがFFT ただしNは2ⁿのみ

どのくらい高速か? N=4096 約1000倍 N=512 約100倍

収録したデータは離散

FFT解析とは 記録した信号に含まれる周波数成分を調べる → 周波数解析を行う

解析条件設定1-1 FFT Points

PcWaveForm 解析機能講習会資料 15

Analysis Type : Spectrum (peak)	▼ Window Func.: Off ▼	Exp.Window Param : t0 : 0 T : 1024
FFT Points : 1024	Display Lines : 400 Max	: Frequency : 2000.0Hz
Ave FFT Overlap : 50 %	Ave. Counts : 14 Spectra	• Ave C Max C Both

点数で何が変わる? → 周波数分解能∆f Δf = サンプリング周波数 / FFTPoints サンプリング 2kHzの時 FFT Points : 512 Δf = 2000/512 = 3.90625Hz FFT Points : 2048 Δf = 2000/2048 = 0.9765625Hz

サンプリング 5.12kHzの時 FFT Points : 1024 Δf = 5120/1024 = 5Hz

Δ f はサンプリング周波数も影響するため 収録時にも注意が必要

DR600/SR200CTLではSampling RateでBを選択すると 12.8/25.6・・・51.2k/128kの系列が選択できます。

Sampling Ra	ite :		
CA @	в Ос	12.8Hz	•
C:¥Users¥sa	kai¥Download	12.8Hz 25.6Hz 51.2Hz	e
	Memo	128Hz 256Hz 2 : 512Hz 1.28kHz 2.56kHz 5.12kHz	
Signal Name	Range	12.8kHz 25.6kHz 51.2kHz	
		128kHz	

解析条件設定1-1 FFT Points使い分け例

PcWaveForm 解析機能講習会資料 16

FFTPointsを大きくすると・・・

- ・周波数分解能Afが向上
- ・解析に必要な区間が長い

解析条件設定2-1 Ave FFT Param

PcWaveForm 解析機能講習会資料

17

解析条件設定2-2 Ave FFT Param

18

Spectra: 平均化を行った時の結果表示を設定Ave/Max/Bothはそれぞれ 各スペクトルの平均値/最大値/両方を表示を意味します。

例) AveCountが3だった時の100Hzの解析結果が、それぞれ10,15,12だった時 100Hzの結果には

平均→12.3

- 最大→15
- 両方→12.3と15
- が表示されます。

全てのΔfnに対し、同じ処理を行い解析結果として表示されます 解析区間に含まれる信号成分の最大値が必要な場合は、Maxを使用します。

Ave表示使用時の注意

右図のような波形に対し、□部分を選択し、AveCount4で 解析した結果に対し、表示をAveにした場合、ほとんど成分 のない区間の影響で平均値は下がる

解析条件設定3-1 Analysis Type

PcWaveForm 解析機能講習会資料 19

Analysis Condition : Analysis Type : Spectrum (peak) FFT Points : 1024 Ave FFT Param : Overlap : 50 % Ave. Count	dow Func.: Off Exp.Windo t0: 0 Lines: 400 Max Frequency: ts: 14 Spectra • Ave •	ow Param : T : 1024 2000.0Hz Max C Both		
Analysis Type : Spectrum (peak)	\wedge	—— peak		
Spectrum (peak)		rms = peak/	√2	
FFT Points : Power Spectrum Power Spectral Density Energy Spectral Density	/ \	0		
解析結果の選択		~~~~	≣+泪∥	対象例
Sportpum(pools)	• •	所们加不		
Spectrum(peak)	: A	振幅	騒音	œ , ₩0
Spectrum(rms)	: A / V2 (= Arms)		1=1	周期
Power Spectrum	: Arms^2 (= Prms)	<u> ۱۴۲ – – – – – – – – – – – – – – – – – – –</u>	振動	
Power Spectrum Density	: $Prms/\Delta f$ (= PSD)		振動	ランダム
Energy Spectrum Density	: PSD x FFTフレーム長	エネルギー	נייב אבונ	過渡

FFTフレーム長

FFTpoints × サンプリング周期

スペクトラム 信号を成分ごとに分解し、各成分の強度分布で並べたもの パワー 振幅(rms)の二乗(計測での定義)、大きさを表す エネルギー パワーがどのくらいの時間持続するか

解析条件設定3-2 AnalysisType使い分けイメージ PcWaveForm 解析機能講習会資料 20

解析条件設定4-1 WindowFunc

PcWaveForm 解析機能講習会資料

21

Analysis Conditi Analysis Type	: Spectrum (peak)	Window Func.: Off	Exp.Window Param : t0 : 0 T : 1024
FFT Points :	1024	Display Lines : 400	Max Frequency : 2000.0Hz
🔽 Ave FFT	Ave FFT Param : Overlap : 50 %	Ave. Counts : 14	Spectra 💿 Ave 🔿 Max 🔿 Both

窓関数とは? 何故必要か? FFTはFFTPointsの区間が無限に続くと仮定して計算 →つなぎ目が不連続だとスペクトルの漏れが発生

解析条件設定4-2 WindowFunc

窓関数の種類と使い分け

Off	分解能はよいがダイナミックレンジは狭い 過渡現象 周期波形
Hanning	ランダム信号
Hamming	周波数が近接した複数信号
Blackman	分解能が悪いが振幅が比較的正確(HanningとFlatTopの中間)
Kaiser Bessel	大きい信号と小さい信号が周波数を隔てている(高調波分離)
Flat Top	周期信号の振幅値が正確に欲しい時、分解能は悪い
Exponential	応答信号(区間内で応答が収束しない時)

解析条件設定5 Display Lines

PcWaveForm 解析機能講習会資料 23

Analysis Condition : Analysis Type : Spectrum (peak) Vindow Func.: Off t0 : 0 T : 1024	
FFT Points : 1024 Display Lines : 400 Max Frequency : 2000.0Hz	>
Ave FFT Param : Verlap : 50 % Ave. Counts : 14 Spectra • Ave • Max • Both	

表示ライン数の設定 (X軸がLOG軸の時は設定ライン数が含まれる) ディケイド全てを表示します)

初期値

最大值 FFTPoints/2 最大ライン数 x Δf = サンプリング周波数/2 注意: 記録されている最大周波数付近の振幅値は

FFTPoints/2.56

標本化定理

記録したい周波数の1/2より大きいサンプリング周波数が必要 周波数を記録できる ≠ (見た目通りの)波形を記録できる

解析条件設定6 表示:軸の設定

X Axis :-Y Axis :-Axis Attb.: LOG Axis Attb.: LOG - Format : Setting . **** \bigcirc 0dB = max C 0dB = 2e−005 Setting ... **** Format : Scale :-Auto Max Value : 10 Ref.Ch :-Cursor : -O AutoHold G Visible Min Value : 0.1 П O Manual Ŧ X軸 Y軸 Axis Attb.: LOG 軸目盛り設定 Axis Attb.: LOG LINEAR LINEAR LOG 🕥 0dB = LINEAR / LOG / dB • max LOG 🔘 0dB = 🗌 2e-005 Format : Scale :dB. 0dB(基準値)の例 Setting 音 20uPA Format: 振動 10^{-6} m/sec^2 (ISO)C Exponential format Exponential format 10^{-5} m/sec^2 (JIS) C Fractional format 指数表記 小数部n桁 x.xxxE-x Significant Format Fractional format dB計算 C Relative time format 小数部n桁 x.xxx $dB = 10 Log_{10}(\frac{A^2}{\Lambda o^2})$ C Real time format Significant format Example: 3.141592 = $20 Log_{10}(\frac{A}{A0})$ 整数部小数部合わせてn桁 x.xx 3.1416 桁数設定 Precision 5 Precision:

dB計算例 A=0.01,A0=1e-5 20Log₁₀ (<u>0.01</u>) = 60dB

PcWaveForm 解析機能講習会資料 24

解析条件設定7 表示:Cursor, Ref Ch

PcWaveForm 解析機能講習会資料 25

解析条件設定8 表示色の変更

-Color :		 	Plot :					
(]	Outside : Inside :	Π	Plot 1	Color	Ch 3	Name 81	Unit G	→ CHデータ
ר (נ (Title : GridLine : Scale Value : Cursor Line :	L						
	\checkmark							

 Outside
 : グラフ外側の枠の背景色
 Inside : グラフ内側の背景色 Title : グラフタイトル文字色 GridLine : グリッド線色 Scale Value: スケール値の文字色 Cursor : カーソル線色

スペクトラム表示色

使い方 複数のCHを比較する1

27

 CH、範囲を選択しFFT解析を行う
 FFT解析windowから波形表示Windowに戻る(FFTWindowをクローズしない) 元に戻す(縮小)ボタン、Window選択、Horz Tile選択など

3. 波形表示Windowで比較したいCHを選択し、 FFT解析を行う

表示例:Horz Tile選択

使い方 複数のCHを比較する2

1.Analyze -> Multi Ch FFT... (Version 7.11以降の新機能) 2.選択した最大9ch(物理量単位が異なっていてもよい)を同一条件でFFT解析

解析対象CH選択

		with the		Un	INAIIIE	Unit
CH 1	X Axis Acc	G		🛄 1	X Axis Acc	G
сн 2	Y Axis Acc	G		🛄 2	Y Axis Acc	G
сн 3	Z Axis Acc	G		🛄 3	Z Axis Acc	G
CH 4	Rotational Speed	rpm		E 4	Rotational Speed	rpm
			>>			
`						/

表示例:複数CH FFT

解析条件設定

FFT Cnd Setting	×
Title : FFT/AVEFFT	
- Analysis Condition :	
Analysis Type : Power Spectral Density Window Func. Off Exp.Window Param : t0 : 0 T : 1024	
FFT Points : 1024 Display Lines 400 Max Frequency : 1953.125Hz	
Ave FFT Param : Overlap : 0 % Ave. Counts 28 Spectra • Ave C Max C Both	
	-
Axis Attb. : LOG Axis Attb. : LOG Format : Setting	
Format : *.*** Setting © 0dB = max © 0dB = 2e-005	
Cursor : Ref.Ch : C AutoHold Max Value : 110 Visible Ch1 C Manual Min Value : 0.1	
	_
Outside : Plot List:	
Inside : Plot CL Ch Name Unit ScaleMin Scal	
Title : 1 X Axis Acc G 0.000	
GridLine : 2 Axis Acc G 0.000	
Scale Value : 4 4 4 Rotational Spee rpm 0.058 30	
Cursor Line :	
Cancel	
/ 線色、およびY軸スケール設定	

使い方 解析結果を保存する CSVファイル

1.FFT解析Windowを選択した状態でFileを選択 2.Save FFT Dataを選択 3.名前を付けて保存

🚟 Save FFT Data						×
保存する場所(1): 🚺 ダウンロード						
名前		• 種類	♥ サイズ	-		× .
🔒 DASBOX-更新	2013/02/21 13:00	ファイル フォルダー				
K13実用走行_HPG	2013/02/19 13:49	ファイル フォルダー				
🏊 新しいフォルダー	2013/02/04 18:17	ファイル フォルダー				
EV_NG	2013/02/01 15:52	ファイル フォルダー				
	2013/01/23 10:40	ファイル フォルダー				
	2013/01/21 8:58	ファイル フォルダー				
strem	2012/12/21 10:01	ファイル フォルダー				
🚡 WS 150	2012/05/09 18:16	ファイル フォルダー				
CAPT_64bit	2012/01/11 17:38	ファイル フォルダー				
isplus2_20110225_vista(×64)	2011/12/01 13:52	ファイル フォルダー				
Win_x64	2010/01/14 16:27	ファイル フォルダー				
- (1.20)						
7717/26LID/						1禾仔(5)
ファイルの種類(I): Text File (*csv)					-	キャンセル

CSVファイル内容

	0.636631944	41771	FFT/AVEFFT	FFT RESULT
		dr	AVE_140414_131600.h	File Name
▶ 解析条件	81(dB)	81(dB)	Name(Unit)	
	Ch1	Ch2	ChNo	
	Spectrum (peak)	Spectrum (peak)	Analysis Mode	
- <u>-</u>	Kaisar_Bessel	Kaisar_Bessel	Frequency(Hz)	No
	5.95E+01	5.81E+01	0.00E+00	1
	6.14E+01	6.02E+01	5.00E+00	2
L 解析結里	4.74E+01	4.84E+01	1.00E+01	3
	析結果	表示CH解	昏 周波数	ペクトラム都

印刷

1.FFT解析Windowを選択した状態でFileを選択 2.Printを選択

🚟 WAVEFORM - WAVE_140414_13160

File	View	Option	Window	Help
Op Cilo Hea	en Ise ad Info	Ctrl+O		
Sav	/e FFT	Data		
Prii Prii Prii	nt nt Previ nt Setup	Ctrl+P		
1 V 2 w 3 a 4 T	VAVE_14 vindow h aaa hdr Test_01_			
Exi	t			

使い方 任意の周波数の結果を保存する

1.FFT解析Window下部をドラッグ 2.保存したい周波数にカーソルを合わせRegistボタン選択 3.Saveボタンで保存

WaterFall解析とは

Y

WaterFall解析とは

_	Waterfall Setting X Title Waterfall Analysis Ch Title Waterfall Analysis Ch	
/	Analysis Condition Analysis Type Spectrum (peak) Window Func Hanning Exp. Window Param: t0 FFT Points 1024 Ave. Counts 1 Overlap 50 % Display Lines 400 Max Freq. 2000.000 Hz	FFT解析条件
	Angle 20 Z-Axis Mode REFOH Step 100 Ref. ch Ch4 Name rpm rpm Y-Axis Axis Attrb LINEAR Image Auto Max 1000 G Format ***** Setting X-Axis Axis Attrb LINEAR Image Auto Max 0.000 Hz Format ***** Setting	表示軸設定
	Cursor Condition C Off C X-Axis Separate C Z-Axis C Color Map C Curve	表示内容設定
	Outside Inside Grid/Line Scale Value Cursor Line Z-Axis Color Map	表示色設定
	Max Level4 Level3 Level2 Min	
	OK	
	FFT Ave FFT Param: Overlap: 50 % Ave.Counts: 30 Ave.C	団とOverlap,FF ountsは自動的に決
	WaterFall 解析1	区間(1ライン)に

% 50 Ave. Counts 1 Overlap

Tpointsから やまる

こついての 設定なのでAve.Countsは変更可能 デフォルトは1 →大きくすると他のラインと解析範囲が 重なる可能性が高くなので注意

Z軸の設定

X,Y軸の設定

Angle:表示の角度

Mode: CONT、TIME、MARK、REFCHの4種類から選択

CONT	:	時間経過に伴ったスペクトラムの変化を見る時に選択

- TIME : 時間経過に伴ったスペクトラムの変化を見る時に選択、Stepが有効
- MARK : 解析範囲のMARK位置毎
- REFCH : 収録データの任意のチャネルデータ変化

注意点 データは昇順または降順の必要あり

PcWaveForm 解析機能講習会資料 35

C Off C X-Axis Seperate V

OFF、X-Axis、Z-Axisの3種から選択

@ Z-Axis

X-Axis:カーソル線がX軸上を移動 Fixed :特定の周波数を指定 Separate :始点終点の周波数を指定

 When the mean in the set of the

Z-Axis:カーソル線がZ軸上を移動

WaterFall解析とは

表示色の設定

WaterFall解析とは

解析結果の保存 → FFT解析と同じ操作

CSVファイル

1.解析Windowを選択した状態でFileを選択 2.ResultSaveを選択

3.名前を付けて保存

印刷

1.解析Windowを選択した状態でFileを選択 2.Printを選択

- ・FFT解析は信号の周波数成分を調べることができる
- ・目的に合わせた条件設定が必要
- ・WaterFall解析はFFT解析を系列順に表示

- 騒音計出力のデータ処理 -

40

騒音計の出力(V)を音圧(Pa)に変換する

計測された電圧(V)にCal係数をかけると音圧(Pa)に

騒音計出力1Vp-p(0.707Vrms)は何Paか?

- → 騒音計設定レンジ(dB) の時に 1Vp-pが出力される。
 - 例) 110dBレンジに設定すると、110dBのとき1V出力される

デシベルと音圧の変換 110dBって何Pa?

$$110_{dB} = 20Log\left(\frac{X_{Pa}}{20_{\mu Pa}}\right)$$

 $X_{Pa} = 10^{\frac{110}{20}} \times 20 \times 10^{-6} = 6.3255532_{Pa}$

次に、110dBの時のAC出力電圧実効値0.707で割りCAL係数を求めます。

 $Cal = \frac{6.3255532}{0.707106781} = 8.945683125$

計測値にCa1係数をかける方法

CAL機能: メニューバーの[<u>C</u>alibration]→[<u>M</u>anual...]を選択します。

演算機能:メニューバーの[Analyze]→[calc...]を選択します。 騒音計AC出力信号が収録Ch1に収録されているとすると、演算式は下記となります \$1=(#1*10^(110/20)*20e-6)/0.707106781

基準音圧 = 20uPa	(実効値)	(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

帝臣レベルdB - 20×10g (音臣/基進音臣)

Calibration Setting for Each Ch									
CH1:									
Name : SoundLevelMeter_Pa									
Cal.Coef : 8946 New_Unit : Pa									
OK Cancel									

Formula Edi	it	
Formula	\$1	= (#1*10^(110/20)*20e-6)/0.707106781

演算機能

CAL機能

### マイクロホン出力(V)を音圧(Pa)に変換する

計測された電圧(V)にCal係数をかけると音圧(Pa)に マイクロホンの変換係数は音圧感度として書いてあります(rms値)。 感度の例 -40dB±3dB re 1V/Pa  $\rightarrow$  10^(-40/20)=0.01 V/Pa IV/Paを基準値(0dB)を意味します 計測値にCal係数をかける方法は騒音計と同じです。 感度dBはrms値なので感度rmsを感度peakに変換します。 ピーク = 実効値*v2

CAL機能: メニューバーの[<u>C</u>alibration]→[<u>M</u>anual...]を選択します。 本例では1Paで10mVrms=14.1mVpeakなので、係数は70.9になります。

演算機能:メニューバーの[Analyze]→[calc...]を選択します。 マイク出力信号が収録Ch1に収録されているとすると、演算式は下記となります。 \$1=#1*70.9

DR600CTL: 500mVレンジの場合、Phy_UnitをPa、Phy_Val1=1、Cal_Val=14.1mVとします。

#### **摭**風補正

#### 周波数重み付け

#### 騒音計AC出力とマイク出力の違い

騒音計出力 :フィルタ(A/C/Zなど)を掛けた値 マイク出力 :フィルタを掛けてない値

#### フィルタ処理の方法:

演算機能を使い、下記のように記述します。収録Ch1とします。 A特性: \$1=WAC(#1) C特性: \$1=WCC(#1)

聴覚補正フィルタ

人間の聴覚特性に合わせた(低音は聞こえにくいなど) 周波数重み付けを行う

- A特性: 小さい音に対する聴覚の近似
- C特性: 大きい音に対する聴覚の近似
- z特性: 平坦、重みづけなし

騒音レベルはA特性を使用する

#### 時間重み付け 音圧:一定時間の瞬時音圧の実効値

音圧を求めるときの実効値計算の時定数 0.125s :FAST、人間の耳に近似 :SLOW,変動騒音の平均レベル 1s

#### 一定時間の実効値の求め方

演算機能:メニューバーの[Analyze]→[calc...]を選択します。 \$1をPa変換した波形として下記の記述となります \$1=(#1*10^(110/20)*20e-6)/0.707106781 2=RRT(1, 1, 1)

時間重み付けで使用する関数の記述についての訂正 Ver2.01以前の記述はRRV関数となっていましたが、RRT関数が正しい記述となります。

#### 音圧(Pa)を音圧レベル(dB)に変換する

基準音圧(0dB): 20uPa

音圧レベル_{dB} = 
$$20Log\left(\frac{X_{Pa}}{20_{\mu Pa}}\right)$$

#### 音圧レベルの求め方

演算機能:メニューバーの[Analyze]→[calc...]を選択します。 \$1をPa変換した波形として下記の記述となります \$1=(#1*10^(110/20)*20e-6)/0.707106781 \$2=20*LGT(RRT(1,\$1)/20e-6)









1/nオクターブ 低域/高域の周波数が二倍となる区間をn分割 125 250 500 1k 2k 低域遮断周波数f1 中心周波数fm 高域遮断周波数fh

#### 1/3オクターブ分析結果の時系列表示





46



## -加速度データから変位を求める解析での留意事項 -

#### 加速度波形から変位を計算する方法について





加速度を2回積分すると変位になる

しかし、実際の信号波形には単純に2回積分してもまともな答えが得られない →直流成分(や加速に関係ないノイズ等)の影響で発散することが多い



#### 加速度波形から変位を計算する方法について

直流成分がないサイン波(正弦波加振やばねの往復)なら単純に2回積分で計算できるのではないか?







#### cosの積分





変位

元波形をFFT解析

周波数成分を確認

対策:DC成分や不要な周波数成分を取り除いてから解析する

・周期関数(sin波など)の場合、振幅の平均値を減算するとDC成分除去に等しい操作となる

- ・ハイパスフィルタを掛け、DC成分を取り除く
- ・加速に無関係な成分をバンドパスフィルタで取り除く

この領域のみ使用





51







## スクリプトの利点

同じ操作(解析/ファイル変換など)を自動で行う

PcWaveFormの解析機能を使った場合

- ・収録したデータをCSVファイルに変換する ファイルを開く → 範囲選択 → 変換条件などの指定 → CSVファイル
- ・Calc機能でデータを解析する

ファイルを開く → 範囲選択 → 計算式の指定 → 結果ファイル 必要なファイルの数だけ操作を繰り返す

スクリプトを使った場合

- ・収録したデータをCSVファイルに変換する
- ・Calc機能でデータを解析する スクリプトを実行 → 操作したいファイルが存在するフォルダを指定する → 変換されたファイル

#### スクリプトの使い方

🚰 Archi_1 Script 実行メニュー <Archi_1 Exec.> ダイアログを表示

Archi_1 Exec.								
Page1   Page2   Page3   Page4   Page5   Pa	age6							
CSVtoBinaryT6	Brows.	スク	リプトを	メニューに	密録	1, 1-	7 —ì	<b>巽択で実行</b>
波形切り出し一括指定	Brows.	///			- 77 77/		<u>т</u> ,	
波形切り出し一括指定2	Brows.	ファイルを	: ₽\	? 🛛				
CSVtoBinary変換3	Brows.	771110	D場所①: 🔁 Sample_Clc_Script	• 🖶 🖆 📰 •				
統計リスト出力1	Brows.	Sam	pleLP.clc					
一括頻度解析処理	Brows.	63333333						
WAV file変換	Brows.							
波形切り出し都度指定2	Brows.					波形切り出し都度指定2	Brows.	
	Brows.	>> ٦٣٩,μ4	3(N): SampleLP.clc	■	$\rightarrow$	演算式 ⇒ Archi_1変換	Brows.	
	Brows.	ファイルク	D種類(①: Select Files (*.clc)	<ul> <li>キャンセル</li> </ul>			Brows.	

スクリプトを作る calcファイルをスクリプトにする

#### Phase1 calc機能で演算式を作成し保存

😂 WA	VEFORM - [3t	7.hdr Cale	ulation)				22222	Samul	al Piele -	- <b>A B (B</b>		
III Eile	Set View V	indow <u>H</u> elp					44444	- aampi	SEF.CIC	- A C TR		
6	i 😭 🚑 DO	日本 日本 1	10 + 10 + 10 T	■《区志 日間 工生雨	ケイ 単当 中国 国际 ■	T (a 🖬 🗟 🖬 🗟 🖡 🌹	22222	ファイル(圧)	編集(E)	書式(2) 表示(⊻) ヘル	ブ(日)	
Calc1	empRead Calc1	empSave CalcPar	amRead Create	Edit Insert CHCopy ResultCles	CalcExec Auto Save Auto Ope	ResultSave GraphView	22223	CH.No	UNIT	SIGNALNAME	CALCFORMULA	~
File1	Vame			Browse Num smpls	9023 Comment		22222	1	G	X Axis Acc	#1	
							22222	2	G	Y Axis Acc	#2	
<b>P</b> 0	ireate File Date	ResultStartC	h 🔤 1	BaseConv Base	Table ErrorLog	Memo MemoList	22222	3	G	Z Axis Acc	#3	
Data	File Type	- amorphesia	0	0000000 00000			22222	4	G	X Axis Acc LP	LPF(500,LPR(500,#1))	
		- Intracrationo		CONGREEND C FLOWI	02010 000000000000		22222	5	G	Y Axis Acc LP	LPF(500,LPR(500,#2))	
Save	Result ch.No	Unit	SignalName	CalcFormula	Count	FirstData	anna	ŏ	õ	7 4 1 4 10	LDE (E00 LDD (E00 #0))	
*	\$1	G	X Axis Acc	#1	0	0.000000	00000	0	Li I	Z AXIS ACC LF	LPF(300,LPR(300,#3))	
•	\$2	G	Y Axis Acc	2	0	0.000000	00000					
4	\$3	G	Z Axis Acc	#3	0	0.000000	200000					~
•	\$4	G	X Axis Acc LP	LPF(500,LPR(500,#1))	0	0.000000	ininini -					100
•	\$5	G	Y Axis Acc LP	LPF(500,LPR(500,#2))	0	0000000	anna a	5				2 N
✓	\$6	G	Z Axis Acc LP	LPF(500,LPR(500,#3))	0	0.000000	anana 🗖					

## スクリプト機能で作成したclcファイルからスクリプトを作る

波形切出し都度指定2
Brows.
 演算式 ⇒ Archi_1変換
Brows.
Brows.

変換スクリプトはご提供いたします

#### Phase2 Phase1で作成したスクリプトで自動処理



- エディタ機能を使う
  - ・任意で範囲(MARK位置や、収録時間など)指定が可能
  - ・calcで可能な関数を使用できる
  - ・グラフ表示(BMP保存可能)・ファイル形式変換なども可能

WAVEFORM - [Archi_1 Edit 音)	E変換pro]			
File Edit Window Help				_
- 🖶 🔚 🖓 🔛 🔤	◎ ☆ ★ ★ ★ ♥ 第 ■ # 🖸 ≂   目 開   工 坐 範   か ル   響 響   曲 🗎 🗉 目 匡 盔 🖩 面 囚 🖬   🎰	(iii)   iii   🛼 📍	?	
ormula Procedure	FileName C:+Users¥sakai¥Downloads¥音圧変換.prc		CONTROL STATEMENT	
BROWSE	1dcl menu_label "音圧変換" 1	Archi 1 Exec.		×
	4 proc folder sel	Page1   Pa	ige2   Page3   Page4   Pi	age5   Page6
	5 get folder_select "解析対象フォルダ選択"		音圧変換	Brows.
	6 read file_info &1 &2 &3 \$1 .hdr /* \$1:=フォルダ内hdrファイル数 */		統計リスト出力	Edit(E)
	$\frac{7}{3}$ \$2 = \$1		EngineConfigration	Delete(D)
	8 case \$1 = 0		EngineConfigration	brows.
	10 assign &4 = "解析対象ファイルが存在しません。","フォルダ選択を続けますか?"		EngConfigGRAPH	Brows.
	111 set reply &4 "続行する" "終了する" \$2 12 \$2 = NOT(\$2)	WAV file変	換波形ファイル生成 Ver.1	.02b Brows.
	13 ]mess	AR20	0ST16個別検査Ver.1.1	Brows.
	14 ]folder_sel		t.prc	Brows.
	15 case \$1 > 0	Arch	1.File⇒Text File変換	Brows
	17 assign \$2 = \$1<1>			
	18 assign &4 = &1   " "   &2   " "   &3		国際委員会で随意力ジラブ	Brows.
	13 get check_box_status &4 &2 解析対象 ノアイル選択 20 \$1000 = SIM(\$2) /#、翌日フライル数 #/		ISO手腕振動計算	Brows.
	$\begin{array}{c} 20 \\ \hline 21 \\ \hline case \$1000 > 0 \end{array}$		VGLグラフ	Brows.
	22 proc file_loop[ 23 &1 = CREC(\$2 &1)	v	GL用3軸合成CH追加	Brows.
	24 assign &2 = &1   "_音圧変換"	生データ	&ISO用回転数-振動グラ	7 Brows.
	25 \$1001 = 0		経つって川線計量素テ	Brown
	20 repeat_case \$1001 < \$1000	403	PR 7 71 700 La1 1 300 La	brons.
	28 assign &3 = &1(\$1001) ".hdr"	1 — — — — — — — — — — — — — — — — — — —	VGL(移動0.5秒)	Brows.
	29 \$1002 = RFC(&3)		生データ(実効値)	Brows.
	30 case \$1002 = 1		VGL	Brows,
	31 proc note_writei 22 accigo 83 = 821 (注加理学考末社人 (現在使用中) "			
	33 disp value &3 1		ISO_EU機械指令	Brows.
	34 ]note_write	1	VGL(移動1秒)	Brows.
	35 case \$1002 = 0	v	GL(回転数移動2秒)	Brows.
	30 proc exect 37 def file id \$1 \$1(\$1001) way			
	38 assign &100 = &1(\$1001)  "演算対象ファイル読み込み処理"	Result	Sheet Clear	
	39 write progress_status &100	Result	Sheet File Append Write	
	40 read wave %1	Position	_info File Append Write	
	41 assign \$1003 = 1,2 \$1004 = 1	₩ Wave F	File Auto Open	
	43 \$1004 - 1 43	Menu A	kuto Close	
	44 \$1007 = CHS()	R	EAD S	AVE
	45 \$1006 = 0			
	46 repeat_case \$1006 < \$1005		rand tout form 0/ a	"
	J∢	F		

スクリプトの記述仕様・関数仕様に加え 「PcWaveForm取扱説明書Script 記述方法編」 として豊富な記述例もあります